Foreword xiii

Preface xv

Acknowledgments xix

About the Author xxiii

  1. Getting R 1

    1.1 Downloading R 1

    1.2 R Version 2

    1.3 32-bit versus 64-bit 2

    1.4 Installing 2

    1.5 Revolution R Community Edition 10

    1.6 Conclusion 11

  2. The R Environment 13

    2.1 Command Line Interface 14

    2.2 RStudio 15

    2.3 Revolution Analytics RPE 26

    2.4 Conclusion 27

  3. R Packages 29

    3.1 Installing Packages 29

    3.2 Loading Packages 32

    3.3 Building a Package 33

    3.4 Conclusion 33

  4. Basics of R 35

    4.1 Basic Math 35

    4.2 Variables 36

    4.3 Data Types 38

    4.4 Vectors 43

    4.5 Calling Functions 49

    4.6 Function Documentation 49

    4.7 Missing Data 50

    4.8 Conclusion 51

  5. Advanced Data Structures 53

    5.1 data.frames 53

    5.2 Lists 61

    5.3 Matrices 68

    5.4 Arrays 71

    5.5 Conclusion 72

  6. Reading Data into R 73

    6.1 Reading CSVs 73

    6.2 Excel Data 74

    6.3 Reading from Databases 75

    6.4 Data from Other Statistical Tools 77

    6.5 R Binary Files 77

    6.6 Data Included with R 79

    6.7 Extract Data from Web Sites 80

    6.8 Conclusion 81

  7. Statistical Graphics 83

    7.1 Base Graphics 83

    7.2 ggplot2 86

    7.3 Conclusion 98

  8. Writing R Functions 99

    8.1 Hello, World! 99

    8.2 Function Arguments 100

    8.3 Return Values 103

    8.4 do.call 104

    8.5 Conclusion 104

  9. Control Statements 105

    9.1 if and else 105

    9.2 switch 108

    9.3 ifelse 109

    9.4 Compound Tests 111

    9.5 Conclusion 112

  10. Loops, the Un-R Way to Iterate 113

    10.1 for Loops 113

    10.2 while Loops 115

    10.3 Controlling Loops 115

    10.4 Conclusion 116

  11. Group Manipulation 117

    11.1 Apply Family 117

    11.2 aggregate 120

    11.3 plyr 124

    11.4 data.table 129

    11.5 Conclusion 139

  12. Data Reshaping 141

    12.1 cbind and rbind 141

    12.2 Joins 142

    12.3 reshape2 149

    12.4 Conclusion 153

  13. Manipulating Strings 155

    13.1 paste 155

    13.2 sprintf 156

    13.3 Extracting Text 157

    13.4 Regular Expressions 161

    13.5 Conclusion 169

  14. Probability Distributions 171

    14.1 Normal Distribution 171

    14.2 Binomial Distribution 176

    14.3 Poisson Distribution 182

    14.4 Other Distributions 185

    14.5 Conclusion 186

  15. Basic Statistics 187

    15.1 Summary Statistics 187

    15.2 Correlation and Covariance 191

    15.3 T-Tests 200

    15.4 ANOVA 207

    15.5 Conclusion 210

  16. Linear Models 211

    16.1 Simple Linear Regression 211

    16.2 Multiple Regression 216

    16.3 Conclusion 232

  17. Generalized Linear Models 233

    17.1 Logistic Regression 233

    17.2 Poisson Regression 237

    17.3 Other Generalized Linear Models 240

    17.4 Survival Analysis 240

    17.5 Conclusion 245

  18. Model Diagnostics 247

    18.1 Residuals 247

    18.2 Comparing Models 253

    18.3 Cross-Validation 257

    18.4 Bootstrap 262

    18.5 Stepwise Variable Selection 265

    18.6 Conclusion 269

  19. Regularization and Shrinkage 271

    19.1 Elastic Net 271

    19.2 Bayesian Shrinkage 290

    19.3 Conclusion 295

  20. Nonlinear Models 297

    20.1 Nonlinear Least Squares 297

    20.2 Splines 300

    20.3 Generalized Additive Models 304

    20.4 Decision Trees 310

    20.5 Random Forests 312

    20.6 Conclusion 313

  21. Time Series and Autocorrelation 315

    21.1 Autoregressive Moving Average 315

    21.2 VAR 32221.3 GARCH 327

    21.4 Conclusion 336

  22. Clustering 337

    22.1 K-means 337

    22.2 PAM 345

    22.3 Hierarchical Clustering 352

    22.4 Conclusion 357

  23. Reproducibility, Reports and Slide Shows with knitr 359

    23.1 Installing a LATEX Program 359

    23.2 LATEX Primer 360

    23.3 Using knitr with LATEX 362

    23.4 Markdown Tips 367

    23.5 Using knitr and Markdown 368

    23.6 pandoc 369

    23.7 Conclusion 371

  24. Building R Packages 373

    24.1 Folder Structure 373

    24.2 Package Files 373

    24.3 Package Documentation 380

    24.4 Checking, Building and Installing 383

    24.5 Submitting to CRAN 384

    24.6 C++ Code 384

    24.7 Conclusion 390

  • A Real-Life Resources 391
    • A.1 Meetups 391
    • A.2 Stackoverflow 392
    • A.3 Twitter 393
    • A.4 Conferences 393
    • A.5 Web Sites 393
    • A.6 Documents 394
    • A.7 Books 394
    • A.8 Conclusion 394
  • B Glossary 395

List of Figures 409

List of Tables 417

General Index 419

Index of Functions 427

Index of Packages 431

Index of People 433

Data Index 435

Related Posts



Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.