A few weeks ago my iPhone for some reason erased ALL of my previous text messages (SMS and MMS) and it was as if I was starting with a new phone. After doing some digging I discovered that each time you sync your iPhone a copy of its text message database is saved on your computer which can be accessed without jailbreaking.
My original intent was to take the old database and union it with the new database for all the texting I had done since then, thus restoring all of my text messages. But once I got into the SQLite database I realized that I had a ton of information on my hands that was begging to be analyzed. It also didn’t hurt that I was in a lovely but small Vermont town for the week without much else to do at night.
My first finding, as seen above, is that my text messaging spiked after my girlfriend and I broke up around July of last year. Notice that for both years there is a dip in December. That’s because in 2009 I was in Burma during December and for 2010 the data stopped on December 6th when the last backup was made. A simple t-test confirmed that my texting did indeed increase after the breakup.
More interestingly, is that before my girlfriend and I broke up last year I texted more men than women, but shortly after we broke up that flipped. I don’t think that needs much of an explanation. The above graph and further analysis excludes her and family members because they would bias the gender effect. Being a good statistician I ran a poisson regression to see if there really was a significant change. The coefficient plot below (which is on the logarithmic scale) shows that my texting with males increased after the breakup (or Epoch) by 74% (calculated by summing the coefficients for “Epoch”, “Male” and “Male:Epoch” and then exponentiating) while my texting with females increased 127%.
Further analysis and a how-to after the break.
Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.