With the Super Bowl only hours away now is your last chance to buy your boxes. Assuming the last digits are not assigned randomly you can maximize your chances with a little analysis. While I’ve seen plenty of sites giving the raw numbers, I thought a little visualization was in order.
In the graph above (made using ggplot2 in R, of course) the bigger squares represent greater frequency. The axes are labelled “Home” and “Away” for orientation, but in the Super Bowl that probably doesn’t matter too much, especially considering that Indianapolis is (Peyton) Manning territory so the locals will most likely be rooting for the Giants. Further, I believe Super Bowl XLII, featuring the same two teams, had a disproportionate number of Giants fans. Bias disclaimer: GO BIG BLUE!!!
Below is the same graph broken down by year to see how the distribution has changed over the past 20 years.
All the data was scraped from Pro Football Reference. All of my code and other graphs that didn’t make the cut are at my github site.
As always, send any questions my way.
Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.
Leave a Reply