The other night I attended a talk about the history of Brooklyn pizza at the Brooklyn Historical Society by Scott Wiener of Scott’s Pizza Tours. Toward the end, a woman stated she had a theory that pizza slice prices stay in rough lockstep with New York City subway fares. Of course, this is a well known relationship that even has its own Wikipedia entry, so Scott referred her to a New York Times article from 1995 that mentioned the phenomenon.

However, he wondered if the preponderance of dollar slice shops has dropped the price of a slice below that of the subway and playfully joked that he wished there was a statistician in the audience.

Naturally, that night I set off to calculate the current price of a slice in New York City using listings from MenuPages. I used R’s XML package to pull the menus for over 1,800 places tagged as “Pizza” in Manhattan, Brooklyn and Queens (there was no data for Staten Island or The Bronx) and find the price of a cheese slice.

After cleaning up the data and doing my best to find prices for just cheese/plain/regular slices I found that the mean price was $2.33 with a standard deviation of$0.52 and a median price of $2.45. The base subway fare is$2.50 but is actually $2.38 after the 5% bonus for putting at least$5 on a MetroCard.

So, even with the proliferation of dollar slice joints, the average slice of pizza ($2.33) lines up pretty nicely with the cost of a subway ride ($2.38).

Taking it a step further, I broke down the price of a slice in Manhattan, Queens and Brooklyn. The vertical lines represented the price of a subway ride with and without the bonus.  We see that the price of a slice in Manhattan is perfectly right there with the subway fare.

MenuPages even broke down Queens Neighborhoods so we can have a more specific plot.

Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.

For a d3 bar plot visit http://www.jaredlander.com/plots/PizzaPollPlot.html.

I finally compiled the data from all the pizza polling I’ve been doing at the New York R meetups. The data are available as json at http://www.jaredlander.com/data/PizzaPollData.php.

This is easy enough to plot in R using ggplot2.

require(rjson)
require(plyr)
pizzaJson <- fromJSON(file = "http://jaredlander.com/data/PizzaPollData.php")
pizza <- ldply(pizzaJson, as.data.frame)

##   polla_qid      Answer Votes pollq_id                Question
## 1         2   Excellent     0        2  How was Pizza Mercato?
## 2         2        Good     6        2  How was Pizza Mercato?
## 3         2     Average     4        2  How was Pizza Mercato?
## 4         2        Poor     1        2  How was Pizza Mercato?
## 5         2 Never Again     2        2  How was Pizza Mercato?
## 6         3   Excellent     1        3 How was Maffei's Pizza?
## 1  Pizza Mercato 1.344e+09         13  0.0000
## 2  Pizza Mercato 1.344e+09         13  0.4615
## 3  Pizza Mercato 1.344e+09         13  0.3077
## 4  Pizza Mercato 1.344e+09         13  0.0769
## 5  Pizza Mercato 1.344e+09         13  0.1538
## 6 Maffei's Pizza 1.348e+09          7  0.1429

require(ggplot2)
ggplot(pizza, aes(x = Place, y = Percent, group = Answer, color = Answer)) +
geom_line() + theme(axis.text.x = element_text(angle = 46, hjust = 1), legend.position = "bottom") +
labs(x = "Pizza Place", title = "Pizza Poll Results")


But given this is live data that will change as more polls are added I thought it best to use a plot that automatically updates and is interactive. So this gave me my first chance to need rCharts by Ramnath Vaidyanathan as seen at October’s meetup.

require(rCharts)
pizzaPlot <- nPlot(Percent ~ Place, data = pizza, type = "multiBarChart", group = "Answer")
pizzaPlot$xAxis(axisLabel = "Pizza Place", rotateLabels = -45) pizzaPlot$yAxis(axisLabel = "Percent")
pizzaPlot$chart(reduceXTicks = FALSE) pizzaPlot$print("chart1", include_assets = TRUE)


Unfortunately I cannot figure out how to insert this in WordPress so please see the chart at http://www.jaredlander.com/plots/PizzaPollPlot.html. Or see the badly sized one below.

There are still a lot of things I am learning, including how to use a categorical x-axis natively on linecharts and inserting chart titles. I found a workaround for the categorical x-axis by using tickFormat but that is not pretty. I also would like to find a way to quickly switch between a line chart and a bar chart. Fitting more labels onto the x-axis or perhaps adding a scroll bar would be nice too.

Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.

Attending this week’s Strata conference it was easy to see quite how prolific the NYC Data Mafia is when it comes to writing.  Some of the found books:

And, of course, my book will be out soon to join them.

Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.

The wonderful people at Gilt are having me teach an introductory course on R this Friday.

The class starts with the very basics such as variable types, vectors, data.frames and matrices.  After that we explore munging data with aggregate, plyr and reshape2.  Once the data is prepared we will use ggplot2 to visualize it and then fit models using lm, glm and decision trees.

Most of the material comes from my upcoming book R for Everyone.

Participants are encouraged to bring computers so they can code along with the live examples.  They should also have R and RStudio preinstalled.

Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.

Given the warnings for today’s winter storm, or lack of panic, I thought it would be a good time to plot the NYC evacuation maps using R. Of course these are already available online, provided by the city, but why not build them in R as well?

I obtained the shapefiles from NYC Open Data on February 28th, so it’s possible they are the new shapefiles redrawn after Hurricane Sandy, but I am not certain.

First we need the appropriate packages which are mostly included in maptools, rgeos and ggplot2.

require(maptools) 
## Loading required package: maptools 
## Loading required package: foreign 
## Loading required package: sp 
## Loading required package: lattice 
## Checking rgeos availability: TRUE 
require(rgeos) 
## Loading required package: rgeos 
## Loading required package: stringr 
## Loading required package: plyr 
## rgeos: (SVN revision 348) GEOS runtime version: 3.3.5-CAPI-1.7.5 Polygon ## checking: TRUE 
require(ggplot2) 
## Loading required package: ggplot2 
require(plyr) require(grid) 
## Loading required package: grid 

Then we read in the shape files, fortify them to turn them into a data.frame for easy plotting then join that back into the original data to get zone information.

# read the shape file evac <- readShapeSpatial("../data/Evac_Zones_with_Additions_20121026/Evac_Zones_with_Additions_20121026.shp") # necessary for some of our work gpclibPermit() 
## [1] TRUE 
# create ID variable evac@data\$id <- rownames(evac@data) # fortify the shape file evac.points <- fortify(evac, region = "id") # join in info from data evac.df <- join(evac.points, evac@data, by = "id") # modified data head(evac.df) 
## long lat order hole piece group id Neighbrhd CAT1NNE Shape_Leng ## 1 1003293 239790 1 FALSE 1 0.1 0 <NA> A 9121 ## 2 1003313 239782 2 FALSE 1 0.1 0 <NA> A 9121 ## 3 1003312 239797 3 FALSE 1 0.1 0 <NA> A 9121 ## 4 1003301 240165 4 FALSE 1 0.1 0 <NA> A 9121 ## 5 1003337 240528 5 FALSE 1 0.1 0 <NA> A 9121 ## 6 1003340 240550 6 FALSE 1 0.1 0 <NA> A 9121 ## Shape_Area ## 1 2019091 ## 2 2019091 ## 3 2019091 ## 4 2019091 ## 5 2019091 ## 6 2019091 
# as opposed to the original data head(evac@data) 
## Neighbrhd CAT1NNE Shape_Leng Shape_Area id ## 0 <NA> A 9121 2019091 0 ## 1 <NA> A 12250 54770 1 ## 2 <NA> A 10013 1041886 2 ## 3 <NA> B 11985 3462377 3 ## 4 <NA> B 5816 1515518 4 ## 5 <NA> B 5286 986675 5 

Now, I’ve begun working on a package to make this step, and later ones easier, but it’s far from being close to ready for production. For those who want to see it (and contribute) it is available at https://github.com/jaredlander/mapping. The idea is to make mapping (including faceting!) doable with one or two lines of code.

Now it is time for the plot.

ggplot(evac.df, aes(x = long, y = lat)) + geom_path(aes(group = group)) + geom_polygon(aes(group = group, fill = CAT1NNE)) + list(theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), axis.ticks = element_blank(), panel.background = element_blank())) + coord_equal() + labs(x = NULL, y = NULL) + theme(plot.margin = unit(c(1, 1, 1, 1), "mm")) + scale_fill_discrete("Zone") 

There are clearly a number of things I would change about this plot including filling in the non-evacuation regions, connecting borders and smaller margins. Perhaps some of this can be accomplished by combining this information with another shapefile of the city, but that is beyond today’s code.

Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.

Continuing with the newly available football data (new link) and inspired by a question from Drew Conway I decided to look at play selection based on down by the Giants for the past 10 years.

Visually, we see that until 2011 the Giants preferred to run on first and second down.  Third down is usually a do-or-die down so passes will dominate on third-and-long.  The grey vertical lines mark Super Bowls XLII and XLVI.

Code for the graph after the break.

Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.

With the recent availability (new link) of play-by-play NFL data I got to analyzing my favorite team, the New York Giants with some very hasty EDA.

From the above graph you can see that on 1st down Eli preferred to throw to Hakim Nicks and on 2nd and 3rd downs he slightly favored Victor Cruz.

The code for the analysis is after the break.

Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.

How was La Vera?

• Never Again (6%, 1 Votes)

Total Voters: 18

Aggregated results.

Results from individual previous polls are below. Continue reading

Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.

A friend of mine has told me on numerous occasions that since 1960 the Yankees have not won a World Series while a Republican was President.  Upon hearing this my Republican friends (both Yankee and Red Sox fans) turn incredulous and say that this is ridiculous.  So I decided to investigate.  To be clear this is in no way shows causality, but just checks the numbers.

The data was easily attainable so it really came down to plotting.

The plot above shows every Yankee win (and loss) since 1960 and the party of the President at the time.  It is clear to see that all nine Yankees World Series wins came while a Democrat inhabited the White House.  The fluctuation plot below shows Yankee wins both before and after 1960 and the complete lack of a block for Republican/Post-1960 simply makes the case.

There are similar plots for the American League after the jump.

Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.

How was Pizza Mercato?

• Never Again (15%, 2 Votes)

Total Voters: 13

#### Related Posts

Jared Lander is the Chief Data Scientist of Lander Analytics a New York data science firm, Adjunct Professor at Columbia University, Organizer of the New York Open Statistical Programming meetup and the New York and Washington DC R Conferences and author of R for Everyone.